A refinement of Stark's conjecture over complex cubic number fields
From MaRDI portal
Publication:1011661
DOI10.1016/j.jnt.2008.10.015zbMath1184.11048OpenAlexW2049298916WikidataQ123289844 ScholiaQ123289844MaRDI QIDQ1011661
Publication date: 9 April 2009
Published in: Journal of Number Theory (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jnt.2008.10.015
Units and factorization (11R27) Class field theory (11R37) Zeta functions and (L)-functions of number fields (11R42)
Related Items (3)
On the theory of normalized Shintani \(L\)-functions and its application to Hecke \(L\)-functions. I. Real quadratic fields ⋮ Signed Shintani cones for number fields with one complex place ⋮ An enhancement of Zagier’s polylogarithm conjecture
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- The Stark conjectures on Artin \(L\)-functions at \(s=0\). Lecture notes of a course in Orsay edited by Dominique Bernardi and Norbert Schappacher.
- Shintani zeta functions and Gross-Stark units for totally real fields
- Arguments for the Stark units and periods of Eisenstein series
- Values of abelian \(L\)-functions at negative integers over totally real fields
- \(L\)-functions at \(s=1\). IV: First derivatives at \(s=0\)
- \(L\)-functions at \(s=1\). III: Totally real fields and Hilbert's twelfth problem
- Eisenstein group cocycles for \(\text{GL}_ n\) and values of \(L\)- functions
- Stark's conjecture over complex cubic number fields
- On Barnes' multiple zeta and gamma functions
This page was built for publication: A refinement of Stark's conjecture over complex cubic number fields