The spectrum for quasigroups with cyclic automorphisms and additional symmetries.
From MaRDI portal
Publication:1011718
DOI10.1016/j.disc.2008.01.020zbMath1221.20047OpenAlexW1971236443MaRDI QIDQ1011718
Melinda Buchanan, Ian M. Wanless, Darryn E. Bryant
Publication date: 9 April 2009
Published in: Discrete Mathematics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.disc.2008.01.020
Latin squaresSteiner triple systemsMendelsohn triple systemsfinite quasigroupscyclic automorphismssemi-symmetric quasigroupsspectrum of quasigroupstotally symmetric quasigroups
Orthogonal arrays, Latin squares, Room squares (05B15) Loops, quasigroups (20N05) Triple systems (05B07)
Related Items
Cycle structure of autotopisms of quasigroups and latin squares ⋮ The set of autotopisms of partial Latin squares ⋮ A congruence connecting Latin rectangles and partial orthomorphisms ⋮ Autoparatopisms of Quasigroups and Latin Squares ⋮ Computing Autotopism Groups of Partial Latin Rectangles ⋮ Enumerating partial Latin rectangles ⋮ Enumeration of Latin squares with conjugate symmetry ⋮ Lambda-rings of automorphisms ⋮ Diagonally cyclic Latin squares. ⋮ Diagonally cyclic equitable rectangles ⋮ ON THE NUMBER OF LATIN RECTANGLES ⋮ Quasigroup automorphisms and the Norton-Stein complex ⋮ New families of atomic Latin squares and perfect 1-factorisations. ⋮ Autotopism stabilized colouring games on rook's graphs ⋮ Colouring games based on autotopisms of Latin hyper-rectangles ⋮ Symmetries of partial Latin squares ⋮ Refining invariants for computing autotopism groups of partial Latin rectangles ⋮ Lagrange's theorem for Hom-groups ⋮ The Order of Automorphisms of Quasigroups
Cites Work
- Steiner triple systems with rotational automorphisms
- Sequencings and starters
- Hooked \(k\)-extended Skolem sequences
- Diagonally cyclic Latin squares.
- Extended triple systems
- On certain distributions of integers in pairs with given differences
- Verification of a Conjecture of Th. Skolem.
- Extended skolem sequences
- Decompositions of complete graphs into triangles and Hamilton cycles
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item