Capitulation of 2-class ideals of \(\mathbb Q\left(\sqrt{-pq(2+\sqrt 2)}\right)\) where \(p\equiv q\equiv {\pm 5} \bmod 8\)
From MaRDI portal
Publication:1017362
DOI10.5802/ambp.253zbMath1169.11046OpenAlexW2275103875MaRDI QIDQ1017362
Abdelmalek Azizi, Mohammed Talbi
Publication date: 18 May 2009
Published in: Annales Mathématiques Blaise Pascal (Search for Journal in Brave)
Full work available at URL: http://www.numdam.org/item?id=AMBP_2009__16_1_57_0
Units and factorization (11R27) Class field theory (11R37) Class numbers, class groups, discriminants (11R29)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Number fields with class number congruent to 4 mod 8 and Hilbert's Theorem 94
- The 2-class group of biquadratic fields. II
- Sur le 2-groupe des classes d'idéaux des corps quadratiques.
- Kuroda's class number formula
- Capitulation des 2-classes d'idéaux de Q(\sqrt 2,\sqrt d) où d est un entier naturel sans facteurs carrés
- Sur la capitulation des 2-classes d'idéaux de
This page was built for publication: Capitulation of 2-class ideals of \(\mathbb Q\left(\sqrt{-pq(2+\sqrt 2)}\right)\) where \(p\equiv q\equiv {\pm 5} \bmod 8\)