Lorentz-Sobolev spaces and systems of Schrödinger equations in \(\mathbb R^N\)
DOI10.1016/j.na.2008.12.016zbMath1165.35010OpenAlexW2012531838WikidataQ59278484 ScholiaQ59278484MaRDI QIDQ1017720
Publication date: 12 May 2009
Published in: Nonlinear Analysis. Theory, Methods \& Applications. Series A: Theory and Methods (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.na.2008.12.016
Schrödinger equationselliptic systemscritical growthTrudinger-Moser inequalityLorentz spaceslimiting Sobolev's embeddings
Spaces of measurable functions ((L^p)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.) (46E30) Sobolev spaces and other spaces of ``smooth functions, embedding theorems, trace theorems (46E35) Variational methods for elliptic systems (35J50) NLS equations (nonlinear Schrödinger equations) (35Q55)
Related Items
Cites Work
- Existence of solitary waves for supercritical Schrödinger systems in dimension two
- A sharp inequality of J. Moser for higher order derivatives
- Sobolev type embeddings in the limiting case
- A sharp Trudinger-Moser type inequality for unbounded domains in \(\mathbb R^2\)
- Moser-type inequalities in Lorentz spaces
- Singularity and decay estimates in superlinear problems via Liouville-type theorems. I: Elliptic equations and systems
- An Orlicz-space approach to superlinear elliptic systems
- Convolution operators and L(p, q) spaces
- On L(p,q) spaces
- Some new functional spaces
- A Moser-type inequality in Lorentz–Sobolev spaces for unbounded domains in RN
- On optimization problems with prescribed rearrangements
- A note on limiting cases of sobolev embeddings and convolution inequalities
- A rellich type identity and applications
- On Superquadratic Elliptic Systems
- A sharp Trudinger-Moser type inequality for unbounded domains in $\mathbb{R}^n$
- A note on L(\infty, q) spaces and Sobolev embeddings
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item