The \(p\)-approximation property in terms of density of finite rank operators
DOI10.1016/j.jmaa.2008.12.047zbMath1168.46008OpenAlexW2128423703MaRDI QIDQ1018169
Publication date: 13 May 2009
Published in: Journal of Mathematical Analysis and Applications (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jmaa.2008.12.047
\(p\)-summing operator\(p\)-nuclear operator\(p\)-approximation property\(p\)-compact operatordual operator idealquasi-\(p\)-nuclear operator
Linear operators belonging to operator ideals (nuclear, (p)-summing, in the Schatten-von Neumann classes, etc.) (47B10) Spaces of operators; tensor products; approximation properties (46B28)
Related Items (26)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Duality in spaces of operators and smooth norms on Banach spaces
- Compact holomorphic mappings on Banach spaces and the approximation property
- The approximation property in terms of the approximability of weak\(^*\)-weak continuous operators.
- Isometric factorization of weakly compact operators and the approximation property
- Factoring compact operators
- Hypothèse d'approximation à l'ordre \(p\) dans les espaces de Banach et approximation d'applications \(p\) absolument sommantes
- A counterexample to the approximation problem in Banach spaces
- Compact operators whose adjoints factor through subspaces of lp
- Approximation properties of orderp and the existence of non-p-nuclear operators withp-nuclear second adjoints
- On the Approximation Properties for the SpaceH∞
- A Survey of Some Results in Connection with Grothendieck Approximation Property
- Compact operators which factor through subspaces of lp
- p-nukleare und p-integrale Abbildungen in Banachräumen
- Produits tensoriels d'espaces de Banach et classes d'applications linéaires
- Factorization of compact operators and applications to the approximation problem
- The Approximation Problem for Banach Spaces
- Produits tensoriels topologiques et espaces nucléaires
This page was built for publication: The \(p\)-approximation property in terms of density of finite rank operators