On the boundedness of bilinear operators on products of Besov and Lebesgue spaces
From MaRDI portal
Publication:1018656
DOI10.1016/j.jmaa.2008.11.020zbMath1160.42306OpenAlexW2168380559MaRDI QIDQ1018656
Diego Maldonado, Virginia Naibo
Publication date: 20 May 2009
Published in: Journal of Mathematical Analysis and Applications (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jmaa.2008.11.020
Maximal functions, Littlewood-Paley theory (42B25) Sobolev spaces and other spaces of ``smooth functions, embedding theorems, trace theorems (46E35)
Related Items
Boundedness of multilinear Littlewood-Paley operators on Amalgam-Campanato spaces ⋮ On certain commutator estimates for vector fields ⋮ A new proof of the bilinear T(1) Theorem ⋮ Bilinear wavelet representation of Calderón-Zygmund forms ⋮ Bilinear square functions and vector-valued Calderón-Zygmund operators ⋮ Bilinear Sobolev-Poincaré inequalities and Leibniz-type rules ⋮ Existence and boundedness of multilinear Littlewood-Paley operators on Campanato spaces ⋮ On multilinear Littlewood-Paley operators ⋮ Weighted multilinear square functions bounds ⋮ A bilinear T(b) theorem for singular integral operators
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Some remarks on bilinear Littlewood--Paley theory
- A discrete transform and decompositions of distribution spaces
- Weighted norm inequalities for paraproducts and bilinear pseudodifferential operators with mild regularity
- A multilinearization of Littlewood-Paley's g-function and Carleson measures
- Multiplication properties of the spaces \(B^s_{p,q}\) and \(F^s_{p,q}\). Quasi-Banach algebras of functions
- Commutateurs d'intégrales singulières et opérateurs multilinéaires
- Multiplication properties of Besov spaces
- \(L^p\) estimates on the bilinear Hilbert transform for \(2<p<\infty\)
- On Calderón's conjecture
- The generalization of paraproducts and the full T1 theorem for Sobolev and Triebel-Lizorkin spaces
- Bilinear pseudodifferential operators with forbidden symbols on Lipschitz and Besov spaces.
- Bilinear singular integral operators, smooth atoms and molecules
- Multilinear estimates and fractional integration
- \(L^p\)-boundedness for time-frequency paraproducts. II
- Multilinear Calderón-Zygmund theory
- Almost orthogonality and a class of bounded bilinear pseudodifferential operators
- The Marcinkiewicz multiplier condition for bilinear operators
- Discrete decompositions for bilinear operators and almost diagonal conditions
- Bilinear paraproducts revisited
- Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires
- The Full T1 Theorem for Certain Triebel - Lizorkin Spaces
- Maximal operator and weighted norm inequalities for multilinear singular integrals
- Symbolic Calculus and the Transposes of Bilinear Pseudodifferential Operators
- Square Function Estimates and the T(b) Theorem
- On bilinear Littlewood-Paley square functions
- Multilinear Calderón-Zygmund operators on Hardy spaces
- Bilinear operators with non-smooth symbol. I
- A multilinear Schur test and multiplier operators
This page was built for publication: On the boundedness of bilinear operators on products of Besov and Lebesgue spaces