On the parity of the class number of multiquadratic number fields
From MaRDI portal
Publication:1019824
DOI10.1016/j.jnt.2008.12.013zbMath1167.11039OpenAlexW2078696265MaRDI QIDQ1019824
Publication date: 28 May 2009
Published in: Journal of Number Theory (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jnt.2008.12.013
Quadratic extensions (11R11) Units and factorization (11R27) Class numbers, class groups, discriminants (11R29) Other abelian and metabelian extensions (11R20)
Related Items
A multiquadratic field generalization of Artin's conjecture ⋮ On \(2\)-class field towers of some real quadratic number fields with \(2\)-class groups of rank \(3\) ⋮ On the cyclicity of the 2-class group of the fields $\mathbb{Q}(i,\sqrt{p_1},\dots,\sqrt{p_n})$ ⋮ The Iwasawa invariant \(\mu\) vanishes for \(\mathbb{Z}_2\)-extensions of certain real biquadratic fields ⋮ Imaginary multiquadratic fields of class number 1 ⋮ The Chowla–Selberg formula for abelian CM fields and Faltings heights ⋮ Real quadratic number fields with metacyclic Hilbert $2$-class field tower
Cites Work
- Unnamed Item
- Unnamed Item
- On the 2-class group of real multiquadratic fields
- Real quadratic fields with abelian 2-class field tower
- Remarks on \(\mathbb{Z}_ p\)-extensions of number fields
- Imaginary quadratic fields \(k\) with cyclic \(\text{Cl}_2(k^1)\)
- On the parity of the class number of the field \(\mathbb Q(\sqrt p,\sqrt q,\sqrt r)\)
- On the parity of the class number of a biquadratic field
- Some results related to Hilbert's theorem 94
- Sur le rang du 2-groupe de classes de 𝑄({√{𝑚}},{√{𝑑}}) où 𝑚=2 ou un premier 𝑝≡1(𝑚𝑜𝑑4)
- Über Den Bizyklischen Biquadratischen Zahlkörper
- Central Extensions, Galois Groups, and Ideal Class Groups of Number Fields
- Capitulation des 2-classes d'idéaux de Q(\sqrt 2,\sqrt d) où d est un entier naturel sans facteurs carrés
- Real Quadratic Number Fields with 2-Class Group of Type (2,2).