Homotopy analysis of a self-similar boundary-flow driven by a power-law shear
From MaRDI portal
Publication:1020382
DOI10.1007/s00419-007-0169-2zbMath1161.76461OpenAlexW2125083779MaRDI QIDQ1020382
Publication date: 29 May 2009
Published in: Archive of Applied Mechanics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s00419-007-0169-2
Asymptotic methods, singular perturbations applied to problems in fluid mechanics (76M45) Boundary-layer theory, separation and reattachment, higher-order effects (76D10) Dimensional analysis and similarity applied to problems in fluid mechanics (76M55)
Cites Work
- The algebraically decaying wall jet
- Series solutions of unsteady magnetohydrodynamic flows of non-Newtonian fluids caused by an impulsively stretching plate
- The existence and stability of quasi-steady periodic voidage waves in a fluidized bed
- Boundary layer similarity flow driven by power-law shear
- A kind of approximation solution technique which does not depend upon small parameters. II: An application in fluid mechanics
- Boundary-layer similarity flows driven by a power-law shear over a permeable plane surface
- An approximate solution technique not depending on small parameters: A special example
- Exponentially decaying boundary layers as limiting cases of families of algebraically decaying ones
- The laminar boundary layer on oscillating plates and cylinders
- THE NATURAL CONVECTION FLOW ABOVE A HEATED WALL IN A SATURATED POROUS MEDIUM
- Analytic solutions of the temperature distribution in Blasius viscous flow problems
This page was built for publication: Homotopy analysis of a self-similar boundary-flow driven by a power-law shear