Dimension reduction via principal variables
DOI10.1016/J.CSDA.2007.02.012zbMath1452.62408OpenAlexW2133899637MaRDI QIDQ1020840
Jonathan A. Cumming, David A. Wooff
Publication date: 2 June 2009
Published in: Computational Statistics and Data Analysis (Search for Journal in Brave)
Full work available at URL: http://dro.dur.ac.uk/3106/1/3106.pdf
utilitylongitudinal datarepeated measuresprincipal componentsvariable selectionpartial covariancepartial correlation
Computational methods for problems pertaining to statistics (62-08) Factor analysis and principal components; correspondence analysis (62H25) Applications of statistics to biology and medical sciences; meta analysis (62P10)
Related Items (3)
Uses Software
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- How many principal components? Stopping rules for determining the number of non-trivial axes revisited
- Determining the number of components from the matrix of partial correlations
- Applied functional data analysis. Methods and case studies
- Principal component analysis.
- Principal Variables
- Un critère de choix de variables en analyse en composantes principales fondé sur des modèles graphiques gaussiens particuliers
- VARIABLE SELECTION AND INTERPRETATION OF COVARIANCE PRINCIPAL COMPONENTS
- Fast Monte Carlo Algorithms for Matrices III: Computing a Compressed Approximate Matrix Decomposition
This page was built for publication: Dimension reduction via principal variables