Legendre polynomial solutions of high-order linear Fredholm integro-differential equations
From MaRDI portal
Publication:1021523
DOI10.1016/j.amc.2008.12.090zbMath1162.65420OpenAlexW2019450558MaRDI QIDQ1021523
Mehmet Sezer, Hüseyin Hilmi Sorkun, Salih Fuat Yalçinbaş
Publication date: 8 June 2009
Published in: Applied Mathematics and Computation (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.amc.2008.12.090
Related Items (57)
A numerical method to solve a class of linear integro-differential equations with weakly singular kernel ⋮ Laguerre method for solving linear system of Fredholm integral equations ⋮ A Bessel polynomial approach for solving general linear Fredholm integro-differential–difference equations ⋮ Legendre-Galerkin method for the linear Fredholm integro-differential equations ⋮ High-order nonlinear Volterra-Fredholm-Hammerstein integro-differential equations and their effective computation ⋮ Chelyshkov collocation method for a class of mixed functional integro-differential equations ⋮ A new difference method for the singularly perturbed Volterra-Fredholm integro-differential equations on a Shishkin mesh ⋮ Legendre polynomials approximation method for solving Volterra integral equations of the first kind with discontinuous kernels ⋮ A collocation approach for solving linear complex differential equations in rectangular domains ⋮ An effective approach for numerical solutions of high-order Fredholm integro-differential equations ⋮ A numerical approximation based on the Bessel functions of first kind for solutions of Riccati type differential-difference equations ⋮ Application of the Bernstein polynomials for solving the nonlinear fractional type Volterra integro-differential equation with Caputo fractional derivatives ⋮ Utilizing feed-back neural network approach for solving linear Fredholm integral equations system ⋮ Linear barycentric rational collocation method for solving second-order Volterra integro-differential equation ⋮ Approximate solutions of linear Volterra integral equation systems with variable coefficients ⋮ A collocation approach to solving the model of pollution for a system of lakes ⋮ Two-dimensional shifted Legendre polynomials operational matrix method for solving the two-dimensional integral equations of fractional order ⋮ On spectral homotopy analysis method for solving linear Volterra and Fredholm integrodifferential equations ⋮ Weak form quadrature solution of 2mth-order Fredholm integro-differential equations ⋮ The backward substitution method for multipoint problems with linear Volterra-Fredholm integro-differential equations of the neutral type ⋮ ON APPROXIMATE SOLUTION OF HIGH-ORDER LINEAR FREDHOLM INTEGRO-DIFFERENTIAL-DIFFERENCE EQUATIONS WITH VARIABLE COEFFICIENTS USING LEGENDRE COLLOCATION METHOD A. O. ADESANYA, J. A. OSILAGUN, O. O. ADUROJA AND S. ADAMU ⋮ An efficient technique for finding the eigenvalues and the eigenelements of fourth-order Sturm-Liouville problems ⋮ A feedforward neural network based on Legendre polynomial for solving linear Fredholm integro-differential equations ⋮ A new numerical approach method to solve the Lotka-Volterra predator-prey models with discrete delays ⋮ Unnamed Item ⋮ Numerical solutions of systems of linear Fredholm integro-differential equations with Bessel polynomial bases ⋮ An efficient numerical method for a singularly perturbed Fredholm integro-differential equation with integral boundary condition ⋮ A new Bernoulli matrix method for solving high-order linear and nonlinear Fredholm integro-differential equations with piecewise intervals ⋮ A collocation approach for solving systems of linear Volterra integral equations with variable coefficients ⋮ Fibonacci collocation method for solving high-order linear Fredholm integro-differential-difference equations ⋮ An iterative scheme for solving systems of nonlinear Fredholm integrodifferential equations ⋮ A collocation method to find solutions of linear complex differential equations in circular domains ⋮ Bessel polynomial solutions of high-order linear Volterra integro-differential equations ⋮ Taylor collocation approach for delayed Lotka-Volterra predator-prey system ⋮ Hybrid Euler-Taylor matrix method for solving of generalized linear Fredholm integro-differential difference equations ⋮ Laguerre approach for solving system of linear Fredholm integro-differential equations ⋮ Numerical solution of high-order Volterra-Fredholm integro-differential equations by using Legendre collocation method ⋮ Bessel collocation approach for solving continuous population models for single and interacting species ⋮ An exponential method to solve linear Fredholm–Volterra integro-differential equations and residual improvement ⋮ A new collocation method for solution of mixed linear integro-differential-difference equations ⋮ Comparison of Legendre polynomial approximation and variational iteration method for the solutions of general linear Fredholm integro-differential equations ⋮ A numerical approximation for Volterra's population growth model with fractional order ⋮ A new iteration method based on Green's functions for the solution of pdes ⋮ Evolutionary computational intelligence in solving a class of nonlinear Volterra-Fredholm integro-differential equations ⋮ A numerical approach for solving Volterra type functional integral equations with variable bounds and mixed delays ⋮ Modified Legendre operational matrix of differentiation for solving strongly nonlinear dynamical systems ⋮ A stopping rule for an iterative algorithm in systems of integral equations ⋮ Pell-Lucas series approach for a class of Fredholm-type delay integro-differential equations with variable delays ⋮ Left- and right-shifted fractional Legendre functions with an application for fractional differential equations ⋮ Solution of high-order linear Fredholm integro-differential equations with piecewise intervals ⋮ A Hermite collocation method for the approximate solutions of high-order linear Fredholm integro-differential equations ⋮ A collocation approach for solving a class of complex differential equations in elliptic domains ⋮ Legendre Collocation Method to Solve the Riccati Equations with Functional Arguments ⋮ On solution of Fredholm integrodifferential equations using composite Chebyshev finite difference method ⋮ A Bernoulli polynomial approach with residual correction for solving mixed linear Fredholm integro-differential-difference equations ⋮ Existence results for some fractional differential equations related to A ∈ B(L2[a, b)] ⋮ An improved reproducing kernel method for Fredholm integro-differential type two-point boundary value problems
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Optimal control of linear delay systems via hybrid of block-pulse and Legendre polynomials
- A matrix method for solving high-order linear difference equations with mixed argument using hybrid Legendre and Taylor polynomials
- Discussion on convergence of Legendre polynomial for numerical solution of integral equations
- An operational approach to the Tau method for the numerical solution of non-linear differential equations
- Solving second kind integral equations by Galerkin methods with hybrid Legendre and block-pulse functions.
- Numerical solution of linear Fredholm integral equation by using hybrid Taylor and Block-Pulse functions.
- Legendre expansion method for the solution of the second-and fourth-order elliptic equations
- Numerical solution of Volterra integral equations of the second kind with convolution kernel by using Taylor-series expansion method
- A simple Taylor-series expansion method for a class of second kind integral equations
- Taylor polynomial solutions of nonlinear Volterra-Fredholm integral equations
- Numerical solution of a class of integro-differential equations by the tau method with an error estimation
- Legendre polynomials, Legendre--Stirling numbers, and the left-definite spectral analysis of the Legendre differential expression
- Application of Chebyshev, and Legendre polynomials on discrete point set to function interpolation and solving Fredholm integral equations
- Combinatorial and hypergeometric identities via the Legendre polynomials -- a computational approach
- Numerical piecewise approximate solution of Fredholm integro-differential equations by the tau method
- Numerical solution of the system of Fredholm integro-differential equations by the tau method
- Legendre wavelets method for the nonlinear Volterra---Fredholm integral equations
- A Taylor Collocation Method for the Solution of Linear Integro-Differential Equations
- Computational Methods for Integral Equations
- Chebyshev Polynomials in the Numerical Solution of Differential Equations
- A method for the approximate solution of the second‐order linear differential equations in terms of Taylor polynomials
- Taylor polynomial solutions of Volterra integral equations
- A Taylor polynomial approach for solving high-order linear Fredholm integro-differential equations in the most general form
- A method for the approximate solution of the high-order linear difference equations in terms of Taylor polynomials
- The approximate solution of high-order linear Volterra-Fredholm integro-differential equations in terms of Taylor polynomials
This page was built for publication: Legendre polynomial solutions of high-order linear Fredholm integro-differential equations