A strategy for choosing Gegenbauer reconstruction parameters for numerical stability
From MaRDI portal
Publication:1026319
DOI10.1016/j.amc.2009.02.034zbMath1168.65431OpenAlexW2023357681MaRDI QIDQ1026319
Publication date: 24 June 2009
Published in: Applied Mathematics and Computation (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.amc.2009.02.034
numerical stabilityasymptotic analysisGibbs phenomenonexponential convergenceoptimal parametersGegenbauer reconstruction
Cites Work
- Parameter optimization and reduction of round off error for the Gegenbauer reconstruction method
- Robust reprojection methods for the resolution of the Gibbs phenomenon
- On the Gibbs phenomenon. I: Recovering exponential accuracy from the Fourier partial sum of a nonperiodic analytic function
- Reducing the effects of noise in image reconstruction
- On the Gibbs phenomenon. V: Recovering exponential accuracy from collocation point values of a piecewise analytic function
- A NEW STRATEGY FOR CHOOSING THE CHEBYSHEV‐GEGENBAUER PARAMETERS IN A RECONSTRUCTION BASED ON ASYMPTOTIC ANALYSIS
- Spectral Methods for Time-Dependent Problems
- Essentially Nonoscillatory Spectral Fourier Method for Shocks Wave Calculations
- On the Gibbs Phenomenon and Its Resolution
- Determination of Optimal Parameters for the Chebyshev--Gegenbauer Reconstruction Method
- Spectral Collocation and Waveform Relaxation Methods with Gegenbauer Geconstruction for Nonlinear Conservation Laws
- On the Gibbs Phenomenon IV: Recovering Exponential Accuracy in a Subinterval from a Gegenbauer Partial Sum of a Piecewise Analytic Function
- Determining Analyticity for Parameter Optimization of the Gegenbauer Reconstruction Method
- Unnamed Item
- Unnamed Item
- Unnamed Item