A coefficient inequality for Bloch functions with applications to uniformly locally univalent functions
DOI10.1007/s00605-008-0548-yzbMath1169.30006OpenAlexW2033960189MaRDI QIDQ1027744
Takao Terada, Toshiyuki Sugawa
Publication date: 30 June 2009
Published in: Monatshefte für Mathematik (Search for Journal in Brave)
Full work available at URL: http://ir.lib.hiroshima-u.ac.jp/00030650
error functionBloch functionpre-Schwarzian derivativeFekete-Szegö inequalityuniformly locally univalent function
Special classes of univalent and multivalent functions of one complex variable (starlike, convex, bounded rotation, etc.) (30C45) Normal functions of one complex variable, normal families (30D45) Coefficient problems for univalent and multivalent functions of one complex variable (30C50)
Related Items (3)
Cites Work
- Unnamed Item
- A general approach to the Fekete-Szegö problem
- Distortion theorems for Bloch functions
- Growth and coefficient estimates for uniformly locally univalent functions on the unit disk.
- A nonlinear extremal problem for Bloch functions with applications to geometric function theory
- Linear-invariante Familien analytischer Funktionen. I
- Eine Bemerkung Über Ungerade Schlichte Funktionen
- The radius of univalence of the error function
This page was built for publication: A coefficient inequality for Bloch functions with applications to uniformly locally univalent functions