Formal Hopf algebra theory. II: Lax centres
From MaRDI portal
Publication:1030696
DOI10.1016/j.jpaa.2009.03.011zbMath1176.18003OpenAlexW1989928562MaRDI QIDQ1030696
Publication date: 2 July 2009
Published in: Journal of Pure and Applied Algebra (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jpaa.2009.03.011
Related Items
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Formal Hopf algebra theory. I: Hopf modules for pseudomonoids
- Quantum double for quasi-Hopf algebras
- Yoneda structures on 2-categories
- Doubles of quasi-quantum groups
- Braided tensor categories
- Monoidal bicategories and Hopf algebroids
- Functorial calculus in monoidal bicategories
- Dualizations and antipodes
- Integrals for (dual) quasi-Hopf algebras. Applications
- Two characterizations of finite quasi-Hopf algebras.
- Hopf bimodules, coquasibialgebras, and an exact sequence of Kac
- Cauchy characterization of enriched categories
- Hopf modules and the double of a quasi-Hopf algebra
- Coherence for tricategories
- On closed categories of functors
- Tannaka duality for Maschkean categories