A Calderón-Zygmund theory for infinite energy minima of some integral functionals
From MaRDI portal
Publication:1030947
DOI10.4171/RLM/543zbMath1225.42010MaRDI QIDQ1030947
Publication date: 27 October 2009
Published in: Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Serie IX. Rendiconti Lincei. Matematica e Applicazioni (Search for Journal in Brave)
Boundary value problems for second-order elliptic equations (35J25) Maximal functions, Littlewood-Paley theory (42B25) Variational methods for second-order elliptic equations (35J20) Quasilinear elliptic equations (35J62)
Related Items (4)
T-minima and application to the convergence of some integral functionals with infinite energy minima ⋮ Gradient estimates below the duality exponent ⋮ Unnamed Item ⋮ Unnamed Item
Cites Work
- Marcinkiewicz estimates for solutions of some elliptic problems with nonregular data
- Gradient estimates below the duality exponent
- Minimization problems with singular data
- Nonlinear elliptic and parabolic equations involving measure data
- On a conjecture of J. Serrin
- \(T\)-minima: an approach to minimization problems in \(L^1\)
- On some non-linear elliptic differential functional equations
- Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus
- Existence Results Via Regularity For Some Nonlinear Elliptic Problems
- Nonlinear Elliptic Equations with Right Hand Side Measures
- Weak minima of variational integrals.
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: A Calderón-Zygmund theory for infinite energy minima of some integral functionals