A posteriori error estimate for a one-dimensional pollution problem in porous media
DOI10.1016/j.crma.2009.07.017zbMath1400.76077OpenAlexW2083518642MaRDI QIDQ1032860
Boujemâa Achchab, Aziz Darouichi, Rajaa Aboulaich
Publication date: 5 November 2009
Published in: Comptes Rendus. Mathématique. Académie des Sciences, Paris (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.crma.2009.07.017
error estimatorimplicit Euler scheme in timemass transfer of contaminant in porous mediavertex-centered finite volumes in space
Flows in porous media; filtration; seepage (76S05) Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs (65M12) Finite volume methods for initial value and initial-boundary value problems involving PDEs (65M08)
Related Items
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- The finite element method for parabolic equations. I. A posteriori error estimation
- Residual flux-based a posteriori error estimates for finite volume and related locally conservative methods
- A posteriori error estimate for a one-dimensional pollution problem in porous media
- A posteriori error estimators for convection-diffusion equations
- Adaptive finite elements for a linear parabolic problem
- A Posteriori Error Estimations of Some Cell Centered Finite Volume Methods for Diffusion-Convection-Reaction Problems
- An a Posteriori Error Estimate and Adaptive Timestep Control for a Backward Euler Discretization of a Parabolic Problem
- Évaporation d'une substance organique dans un milieu poreux
- A posteriori analysis of the finite element discretization of some parabolic equations