A posteriori error estimation for the dual mixed finite element method for the \(p\)-Laplacian in a polygonal domain
DOI10.1016/j.cma.2006.11.023zbMath1173.65345OpenAlexW1982925778MaRDI QIDQ1033207
Emmanuel Creusé, Mohamed Farhloul, Luc Paquet
Publication date: 6 November 2009
Published in: Computer Methods in Applied Mechanics and Engineering (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.cma.2006.11.023
Error bounds for boundary value problems involving PDEs (65N15) Nonlinear elliptic equations (35J60) Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs (65N30) Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs (65N50)
Related Items (13)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Finite Element Methods for Navier-Stokes Equations
- Sur l'approximation numérique des écoulements quasi-newtoniens dont la viscosité suit la loi puissance ou la loi de Carreau
- A mixed finite element method for a nonlinear Dirichlet problem
This page was built for publication: A posteriori error estimation for the dual mixed finite element method for the \(p\)-Laplacian in a polygonal domain