Numerical transport of an arbitrary number of components
From MaRDI portal
Publication:1033235
DOI10.1016/j.cma.2007.02.007zbMath1173.76364OpenAlexW2028410953MaRDI QIDQ1033235
Stéphane Jaouen, Frédéric Lagoutière
Publication date: 6 November 2009
Published in: Computer Methods in Applied Mechanics and Engineering (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.cma.2007.02.007
Finite volume methods applied to problems in fluid mechanics (76M12) Diffusion and convection (76R99)
Related Items
Eulerian model for simulating multi-fluid flows with an arbitrary number of immiscible compressible components ⋮ Unnamed Item ⋮ A consistent and conservative phase-field method for compressible \(N\)-phase flows: \textit{consistent limiter} and \textit{multiphase reduction-consistent formulation} ⋮ Сквозной метод расчета уравнений переноса многокомпонентной гетерогенной системы на фиксированных эйлеровых сетках ⋮ A geometrically accurate low-diffusive conservative interface capturing method suitable for multimaterial flows ⋮ Antidiffusive <scp>L</scp>agrangian‐remap schemes for models of polydisperse sedimentation ⋮ A hybrid scheme for solving a multi-class traffic flow model with complex wave breaking ⋮ Simulation of sharp interface multi-material flows involving an arbitrary number of components through an extended five-equation model ⋮ A difference scheme for a degenerating convection-diffusion-reaction system modelling continuous sedimentation ⋮ Extension of generic two-component VOF interface advection schemes to an arbitrary number of components
Uses Software
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- An antidiffusive entropy scheme for monotone scalar conservation laws
- Volume of fluid (VOF) method for the dynamics of free boundaries
- Reconstructing volume tracking
- Anti-diffusive flux corrections for high order finite difference WENO schemes
- Systems of conservation laws
- On the Construction and Comparison of Difference Schemes
- Contact discontinuity capturing schemes for linear advection and compressible gas dynamics