Hausdorff measures and Lebesgue points for the Sobolev classes \(W_{\alpha }^p\), \(\alpha > 0\), on spaces of homogeneous type
From MaRDI portal
Publication:1033965
DOI10.1134/S0001434609030298zbMath1182.46023MaRDI QIDQ1033965
Publication date: 10 November 2009
Published in: Mathematical Notes (Search for Journal in Brave)
Hausdorff dimensionHausdorff measureBorel measureLebesgue pointHausdorff capacityHölder classes \(H^{\alpha }(X)\)Sobolev classes \(W_{\alpha }^p\)
Sobolev spaces and other spaces of ``smooth functions, embedding theorems, trace theorems (46E35) Length, area, volume, other geometric measure theory (28A75) Analysis on metric spaces (30L99)
Related Items (3)
Fine properties of functions from Hajłasz-Sobolev classes \(M_\alpha^p\), \(p > 0\). I: Lebesgue points ⋮ Generalized Hajłasz-Sobolev classes on ultrametric measure spaces with doubling condition ⋮ Maximal Functions Measuring Smoothness
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Hausdorff dimension of Lebesgue sets for \(W \alpha p\) classes on metric spaces
- New characterizations of Hajłasz-Sobolev spaces on metric spaces
- Hölder quasicontinuity of Sobolev functions on metric spaces
- Lebesgue points for Sobolev functions on metric spaces.
- Haar wavelets of higher order on fractals and regularity of functions.
- Sobolev spaces on an arbitrary metric space
- Generalized Sobolev classes on metric measure spaces
- Extensions of Hardy spaces and their use in analysis
- Estimates for singular integral operators in terms of maximal functions
This page was built for publication: Hausdorff measures and Lebesgue points for the Sobolev classes \(W_{\alpha }^p\), \(\alpha > 0\), on spaces of homogeneous type