On the rational recursive sequence \(x_{n+1}=\frac{\alpha + \beta x_{n-k}}{\gamma-x_{n}}\)
From MaRDI portal
Publication:1034965
DOI10.1007/S12190-008-0205-6zbMath1181.39014OpenAlexW2069316841MaRDI QIDQ1034965
M. A. El-Moneam, Elsayed M. E. Zayed
Publication date: 9 November 2009
Published in: Journal of Applied Mathematics and Computing (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s12190-008-0205-6
Multiplicative and other generalized difference equations (39A20) Growth, boundedness, comparison of solutions to difference equations (39A22) Periodic solutions of difference equations (39A23) Stability theory for difference equations (39A30)
Related Items (4)
Unnamed Item ⋮ On the dynamics of the nonlinear rational difference equation \(x_{n+1}=Ax_{n}+Bx_{n-k}+Cx_{n-l}+\frac{bx_{n-k}}{dx{n-k}-ex{n-1}}\) ⋮ Unnamed Item ⋮ On the rational difference equation y n + 1 = α 0 y n + α 1 y n − p + α 2 y n − q + α 3 y n − r + α 4 y n − s β 0 y n + β 1 y n − p + β 2 y n − q + β 3 y n − r + β 4 y n − s
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- On the rational recursive sequence \(x_{n+1}=\frac {\alpha x_n+\beta x_{n-1}+\gamma x_{n-2}+\delta x_{n-3}} {Ax_b+ Bx_{n-1}+ Cx_{n-2}+ Dx_{n-3}}\)
- On the rational recursive sequence \(x_{n+1}=(A+\sum_{i=0}^{k}\alpha _{i}x_{n - i})/(B+\sum _{i=0}^{k}\beta _{i}x_{n - i})\)
- On the recursive sequence \(x_{n+1}= -1/x_n+ A/x_{n-1}\)
- The recursive sequence \(x_{n+1} = g(x_{n},x_{n-1})/(A + x_{n})\)
- Global behavior of \(y_{n+1}=\frac{p+y_{n-k}}{qy_n+y_{n-k}}\).
- A Note on the Difference Equation x n +1 = ∑ i =0 k α i x n − i p i
- On the rational recursive sequence $ \ x_{n+1}=\Big ( A+\sum _{i=0}^k\alpha _ix_{n-i}\Big ) \Big / \sum _{i=0}^k\beta _ix_{n-i} $
- On the Recursive Sequencexn+1=α+ (βxn−1)/(1 +g(xn))
- Asymptotic behavior of a sequence defined by iteration with applications
- Stability of the recursive sequence \(x_{n+1}=(\alpha-\beta x_n)/(\gamma+x_{n-1})\)
- A global convergence result with applications to periodic solutions
This page was built for publication: On the rational recursive sequence \(x_{n+1}=\frac{\alpha + \beta x_{n-k}}{\gamma-x_{n}}\)