Quasi-reflexive Fréchet spaces and mean ergodicity
From MaRDI portal
Publication:1036173
DOI10.1016/j.jmaa.2009.08.060zbMath1190.46003OpenAlexW2046942358MaRDI QIDQ1036173
Publication date: 5 November 2009
Published in: Journal of Mathematical Analysis and Applications (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jmaa.2009.08.060
Ergodic theory of linear operators (47A35) Locally convex Fréchet spaces and (DF)-spaces (46A04) Summability and bases in topological vector spaces (46A35) Reflexivity and semi-reflexivity (46A25)
Related Items
Characterizing Fréchet–Schwartz spaces via power bounded operators, Mean ergodic semigroups of operators, Quasi-reflexive Fréchet spaces and contractively power bounded operators, Topological properties of weighted composition operators in sequence spaces, Mean ergodic weighted shifts on Köthe echelon spaces, On the continuous Cesàro operator in certain function spaces, Another mean ergodic characterization of quasi-reflexive spaces, Barrelled spaces and mean ergodicity, Uniform mean ergodicity of \(C_0\)-semigroups in a class of Fréchet spaces
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Quasireflexive locally convex spaces without Banach subspaces
- A remark on bases and reflexivity in Banach spaces
- Bases, basic sequences and reflexivity of linear topological spaces
- On \(k\)-shrinking and \(k\)-boundedly complete bases in Banach spaces
- Bases and quasi-reflexivity of Banach-spaces
- Sur un théorème de Banach
- Bases and reflexivity of Banach spaces
- The basis in Banach space
- Bases and quasi-reflexivity in Fréchet spaces
- Quasi-Reflexive Spaces
- On Quasi-Reflexive Banach Spaces
- Subadditive mean ergodic theorems
- Banach spaces quasi-reflexive of order one
- Schauder Bases and Kothe Sequence Spaces
- A Mean Ergodic Theorem
- Schauder bases and reflexivity
- Ergodic characterizations of reflexivity of Banach spaces