Strong convergence theorems by hybrid methods for a finite family of nonexpansive mappings and inverse-strongly monotone mappings
From MaRDI portal
Publication:1036646
DOI10.1016/j.nahs.2009.05.004zbMath1219.49008OpenAlexW1998134452MaRDI QIDQ1036646
Publication date: 13 November 2009
Published in: Nonlinear Analysis. Hybrid Systems (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.nahs.2009.05.004
Related Items
Strong and weak convergence theorems for general mixed equilibrium, general variational inequality, and fixed point problems for two nonexpansive semigroups in Hilbert spaces ⋮ Strong convergence theorem for a common fixed point of a finite family of strictly pseudo-contractive mappings and a strictly pseudononspreading mapping ⋮ On the hybrid projection method for fixed point and equilibrium problems ⋮ S-iteration process of Halpern-type for common solutions of nonexpansive mappings and monotone variational inequalities ⋮ A fixed point method for solving a split feasibility problem in Hilbert spaces ⋮ System of generalized mixed equilibrium problems, variational inequality, and fixed point problems ⋮ A convergence theorem based on a hybrid relaxed extragradient method for generalized equilibrium problems and fixed point problems of a finite family of nonexpansive mappings
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Weak and strong convergence theorems for a nonexpansive mapping and an equilibrium problem
- A hybrid approximation method for equilibrium and fixed point problems for a monotone mapping and a nonexpansive mapping
- Common fixed points of nonexpansive mappings by iteration
- A remark on a paper of Kuhfittig
- Equilibrium programming using proximal-like algorithms
- Strong convergence theorems for nonexpansive mappings and inverse-strongly monotone mappings
- Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups.
- The approximation of fixed points of compositions of nonexpansive mappings in Hilbert space
- An iterative method for finding common solutions of equilibrium and fixed point problems
- Strong convergence theorems by hybrid methods for families of nonexpansive mappings in Hilbert spaces
- The rate of convergence of dykstra's cyclic projections algorithm: The polyhedral case
- Hybrid Steepest Descent Method for Variational Inequality Problem over the Fixed Point Set of Certain Quasi-nonexpansive Mappings
- On Projection Algorithms for Solving Convex Feasibility Problems
- Weak convergence of the sequence of successive approximations for nonexpansive mappings
- On the Maximality of Sums of Nonlinear Monotone Operators
- Convergence theorems for nonexpansive mappings and feasibility problems
This page was built for publication: Strong convergence theorems by hybrid methods for a finite family of nonexpansive mappings and inverse-strongly monotone mappings