A generalization of Siegel's method
From MaRDI portal
Publication:1037568
DOI10.1007/S11139-009-9167-ZzbMath1226.11058OpenAlexW2087755107MaRDI QIDQ1037568
Publication date: 16 November 2009
Published in: The Ramanujan Journal (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s11139-009-9167-z
Bernoulli and Euler numbers and polynomials (11B68) Dedekind eta function, Dedekind sums (11F20) Higher logarithm functions (33B30)
Related Items (4)
Ramanujan’s Formula for ζ(2n + 1) ⋮ A new proof of the transformation law of Jacobi’s theta function $\theta _3(w,\tau )$ ⋮ A generalization of Siegel's method ⋮ Dirichlet series under standard convolutions: variations on Ramanujan's identity for odd zeta values
Cites Work
- A generalization of Siegel's method
- Modular transformations and generalizations of several formulae of Ramanujan
- Series acceleration formulas for Dirichlet series with periodic coefficients
- On the Lerch zeta function
- Analytic Eisenstein series, theta-functions, and series relations in the spirit of Ramanujan.
- Comments on some formulae of Ramanujan
- A simple proof of η(— 1/τ)= η(τ)√τ/i
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: A generalization of Siegel's method