Gradient flow of a harmonic function in \(\mathbb{R}^3\)
From MaRDI portal
Publication:1038463
DOI10.1016/j.jde.2009.07.027zbMath1179.37027OpenAlexW2027134515MaRDI QIDQ1038463
Publication date: 18 November 2009
Published in: Journal of Differential Equations (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jde.2009.07.027
Dynamics induced by flows and semiflows (37C10) Gradient-like behavior; isolated (locally maximal) invariant sets; attractors, repellers for topological dynamical systems (37B35) Semi-analytic sets, subanalytic sets, and generalizations (32B20)
Related Items (5)
On restricted analytic gradients on analytic isolated surface singularities ⋮ Gradient trajectories for plane singular metrics. I: Oscillating trajectories ⋮ Analytical Properties for Degenerate Equations ⋮ On the stable set of an analytic gradient flow ⋮ Critical points and geometric properties of Green's functions on open surfaces
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- On trajectories of analytic gradient vector fields
- Problèmes rencontrés dans mon parcours mathématique: Un bilan. (Problems I have come across during my mathematical career: A balance)
- Non-oscillating solutions of analytic gradient vector fields
- On semi- and subanalytic geometry
- On the dynamics of gradients. Existence of invariant manifolds
- Escape to infinity under the action of a potential and a constant electromagnetic field
- Champs de vecteurs analytiques et champs de gradients
- On the Nature of the Spectrum of Singular Second Order Linear Differential Equations
- Proof of the gradient conjecture of R. Thom.
- Gradient vector fields do not generate twister dynamics
This page was built for publication: Gradient flow of a harmonic function in \(\mathbb{R}^3\)