Asymptotic properties of MLE for partially observed fractional diffusion system with dependent noises
From MaRDI portal
Publication:1039494
DOI10.1016/j.jspi.2009.08.001zbMath1177.62027OpenAlexW2083190908MaRDI QIDQ1039494
Publication date: 30 November 2009
Published in: Journal of Statistical Planning and Inference (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jspi.2009.08.001
Asymptotic properties of parametric estimators (62F12) Central limit and other weak theorems (60F05) Markov processes: estimation; hidden Markov models (62M05)
Related Items (10)
Fractional Diffusion with Partial Observations ⋮ Adaptative design for estimation of parameter of second order differential equation in fractional diffusion system ⋮ Least squares estimation for the drift parameters in the sub-fractional Vasicek processes ⋮ Minimum contrast estimator for fractional Ornstein-Uhlenbeck processes ⋮ Design for estimation of the drift parameter in fractional diffusion systems ⋮ Parameter estimation for fractional Ornstein-Uhlenbeck processes at discrete observation ⋮ Asymptotic law of limit distribution for fractional Ornstein-Uhlenbeck process ⋮ Minimum distance estimation for fractional Ornstein-Uhlenbeck type process ⋮ Self-normalized asymptotic properties for the parameter estimation in fractional Ornstein–Uhlenbeck process ⋮ Parameter identification for the discretely observed geometric fractional Brownian motion
Cites Work
- Unnamed Item
- Unnamed Item
- Maximum likelihood estimator for hidden Markov models in continuous time
- Asymptotic properties of MLE for partially observed fractional diffusion system
- Integration with respect to fractal functions and stochastic calculus. I
- Filtering and parameter estimation in a simple linear system driven by a fractional Brownian motion
- Differential equations driven by rough signals
- An elementary approach to a Girsanov formula and other analytical results on fractional Brownian motions
- Statistical inference for ergodic diffusion processes.
- Differential equations driven by fractional Brownian motion
- Fractional {O}rnstein-{U}hlenbeck processes
- Statistical analysis of the fractional Ornstein--Uhlenbeck type process
- Extension of the Kalman-Bucy filter to elementary linear systems with fractional Brownian noises
- Stochastic analysis, rough path analysis and fractional Brownian motions.
- Differential equations driven by rough signals. I: An extension of an inequality of L. C. Young
- Sharp Large Deviations for the Fractional Ornstein–Uhlenbeck Process
- Stochastic Differential Equations Driven by Fractional Brownian Motion and Standard Brownian Motion
- Linear estimation of self-similar processes via Lamperti's transformation
- A Cameron-Martin type formula for general Gaussian processes--a filtering approach
- Stieltjes integrals of Hölder continuous functions with applications to fractional Brownian motion
This page was built for publication: Asymptotic properties of MLE for partially observed fractional diffusion system with dependent noises