Schrödinger equations with indefinite weights in the whole space
From MaRDI portal
Publication:1040553
DOI10.1016/j.crma.2009.09.016zbMath1179.35204OpenAlexW2092859901MaRDI QIDQ1040553
Publication date: 25 November 2009
Published in: Comptes Rendus. Mathématique. Académie des Sciences, Paris (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.crma.2009.09.016
maximum principleSchrödinger operatorSchrödinger equationsprincipal eigenvaluesCourant-Fischer formulas
Estimates of eigenvalues in context of PDEs (35P15) Maximum principles in context of PDEs (35B50) NLS equations (nonlinear Schrödinger equations) (35Q55) Schrödinger operator, Schrödinger equation (35J10)
Related Items (1)
Cites Work
- An anti-maximum principle for linear elliptic equations with an indefinite weight function
- An extension of maximum and anti-maximum principles to a Schrödinger equation in \(\mathbb{R}^2\)
- Global bifurcation results for a semilinear elliptic equation on all of \(\mathbb{R}^ N\)
- Principal Eigenvalues for Problems with Indefinite Weight Function on R N
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Schrödinger equations with indefinite weights in the whole space