A linear and accurate diffusion scheme respecting the maximum principle on distorted meshes
From MaRDI portal
Publication:1040567
DOI10.1016/j.crma.2009.10.004zbMath1178.65129OpenAlexW2086559778MaRDI QIDQ1040567
Publication date: 25 November 2009
Published in: Comptes Rendus. Mathématique. Académie des Sciences, Paris (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.crma.2009.10.004
Boundary value problems for second-order elliptic equations (35J25) Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs (65N50) Finite volume methods for boundary value problems involving PDEs (65N08)
Related Items (2)
A monotone nonlinear finite volume method for approximating diffusion operators on general meshes ⋮ A positive scheme for diffusion problems on deformed meshes
Cites Work
- Monotone finite volume schemes for diffusion equations on polygonal meshes
- Physical constraints in numerical calculations of diffusion
- Finite volume monotone scheme for highly anisotropic diffusion operators on unstructured triangular meshes. (Schéma volumes finis monotone pour des opérateurs de diffusion fortement anisotropes sur des maillages de triangles non structurés).
- Une méthode de volumes finis pour les équations elliptiques du second ordre
- A Second-Order Maximum Principle Preserving Finite Volume Method for Steady Convection-Diffusion Problems
This page was built for publication: A linear and accurate diffusion scheme respecting the maximum principle on distorted meshes