Beurling type quotient modules over the bidisk and boundary representations
DOI10.1016/j.jfa.2009.06.031zbMath1178.47002OpenAlexW2091480058MaRDI QIDQ1040576
Publication date: 25 November 2009
Published in: Journal of Functional Analysis (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jfa.2009.06.031
Several-variable operator theory (spectral, Fredholm, etc.) (47A13) (H^p)-spaces, Nevanlinna spaces of functions in several complex variables (32A35) Homological methods in functional analysis (exact sequences, right inverses, lifting, etc.) (46M18) Algebras of specific types of operators (Toeplitz, integral, pseudodifferential, etc.) (47L80)
Related Items (18)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Essentially normal Hilbert modules and \(K\)-homology. III: Homogeneous quotient modules of Hardy modules on the bidisk
- \(N_\phi\)-type quotient modules on the torus
- Extensions of \(C^*\)-algebras and \(K\)-homology
- Subalgebras of \(C^*\)-algebras. III: Multivariable operator theory
- The Dirac operator of a commuting \(d\)-tuple.
- Toeplitz algebras, subnormal tuples and rigidity on reproducing \(C[z_{1},\dots ,z_{d}\)-modules]
- Essentially normal Hilbert modules and \(K\)-homology
- Subalgebras of \(C^ *\)-algebras
- Subalgebras of C\(^*\)-algebras. II
- The noncommutative Choquet boundary
- Quotients of standard Hilbert modules
- Fredholm and Invertible n-Tuples of Operators. The Deformation Problem
- Restrictions of H p Functions in the Polydisk
- The curvature invariant of a Hilbert module over ℂ [z1, ..., zd]
- Defect operators for submodules of H[2[d]]
- Essentially Reductive Weighted Shift Hilbert Modules
- On certain quotient modules of the Bergman module
- Operator theory in the Hardy space over the bidisk. III
This page was built for publication: Beurling type quotient modules over the bidisk and boundary representations