Integrable systems from gauged matrix models.

From MaRDI portal
Publication:1041918

DOI10.1016/0370-2693(91)90739-DzbMath1176.81063OpenAlexW2043453519MaRDI QIDQ1041918

Alexios P. Polychronakos

Publication date: 7 December 2009

Published in: Physics Letters. B (Search for Journal in Brave)

Full work available at URL: https://doi.org/10.1016/0370-2693(91)90739-d




Related Items (24)

\(\mathcal{N} = 4\) supersymmetric U(2)-spin hyperbolic Calogero-Sutherland model${\mathcal N} = 4$ SUPERSYMMETRIC QUANTUM MECHANICS AND HARMONICSTaming the zoo of supersymmetric quantum mechanical modelsQuantum SU\((2 | 1)\) supersymmetric Calogero-Moser spinning systemsNew \(D(2,1;\alpha)\) mechanics with spin variablesMembrane quantum mechanicsMicrostates of a \(2d\) black hole in string theoryMultiparticle \(\mathcal{N} = 8\) mechanics with \(F(4)\) superconformal symmetryClassical solutions for two-dimensional QCD on the sphereHamiltonian systems of Calogero-type, and two-dimensional Yang-Mills theorySQM with non-abelian self-dual fields: harmonic superspace description\(\mathcal{N} = 2\) supersymmetric hyperbolic Calogero-Sutherland modelSupersymmetric many-body Euler-Calogero-Moser model\(\mathcal{N}\)-extended supersymmetric Calogero modelsA gauge theory of the Hamiltonian reduction for the rational Calogero-Moser systemCalogero models and nonlocal conformal transformationsSuperconformal Yang-Mills quantum mechanics and Calogero model with \( {\text{OSp}}\left( {\mathcal{N}|{2},\mathbb{R}} \right) \) symmetryMAGNETIC BACKGROUNDS AND NONCOMMUTATIVE FIELD THEORYSupersymmetric hyperbolic Calogero-Sutherland models by gauging\(\text{SU} (\infty)\) and the large-\(N\) limitA note on the action-angle variables for the rational Calogero-Moser systemExchange operator formalism for integrable systems of particlesDescription of identical particles via gauged matrix models: A generalization of the Calogero-Sutherland systemSU(2|1) supersymmetric spinning models of chiral superfields



Cites Work




This page was built for publication: Integrable systems from gauged matrix models.