A convergence analysis of the inexact Rayleigh quotient iteration and simplified Jacobi-Davidson method for the large Hermitian matrix eigenproblem
From MaRDI portal
Publication:1042819
DOI10.1007/s11425-008-0050-yzbMath1179.65039OpenAlexW2030344570MaRDI QIDQ1042819
Publication date: 7 December 2009
Published in: Science in China. Series A (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s11425-008-0050-y
convergenceeigenvalueeigenvectorJacobi-Davidson methodinexact Rayleigh quotient iterationlarge Hermitian matrixmisconvergencesmallest eigenpairuniform positiveness condition
Related Items
A convergence analysis of the inexact simplified Jacobi-Davidson algorithm for polynomial eigenvalue problems ⋮ Local convergence analysis of several inexact Newton-type algorithms for general nonlinear eigenvalue problems ⋮ On convergence of the inexact Rayleigh quotient iteration with MINRES
Uses Software
Cites Work
- Unnamed Item
- Unnamed Item
- The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices
- The effects of inexact solvers in algorithms for symmetric eigenvalue problems
- Inexact Rayleigh quotient-type methods for eigenvalue computations
- Two-sided and alternating Jacobi-Davidson
- Convergence Analysis of Inexact Rayleigh Quotient Iteration
- A Jacobi–Davidson Iteration Method for Linear Eigenvalue Problems
- Combination of Jacobi–Davidson and conjugate gradients for the partial symmetric eigenproblem
- The convergence of Jacobi–Davidson iterations for Hermitian eigenproblems
- Inexact Inverse Iteration with Variable Shift for Nonsymmetric Generalized Eigenvalue Problems