The confluent hypergeometric functions \(M(a,b;z)\) and \(U(a,b;z)\) for large \(b\) and \(z\)
From MaRDI portal
Publication:1044657
DOI10.1016/J.CAM.2009.02.072zbMath1185.33005OpenAlexW1991951515MaRDI QIDQ1044657
José Luis López, Pedro J. Pagola
Publication date: 18 December 2009
Published in: Journal of Computational and Applied Mathematics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.cam.2009.02.072
Asymptotic approximations, asymptotic expansions (steepest descent, etc.) (41A60) Confluent hypergeometric functions, Whittaker functions, ({}_1F_1) (33C15)
Related Items (4)
Einstein relation for electrons in an electric field ⋮ Numerical methods for the computation of the confluent and Gauss hypergeometric functions ⋮ Numerical model for macroscopic quantum superpositions based on phase-covariant quantum cloning ⋮ An extension of Laplace's method
Cites Work
- Unnamed Item
- Asymptotische Entwicklungen der konfluenten hypergeometrischen Funktionen U(a,b,z) und M(a,b,z) für große Werte von b und z. (Asymptotic expansions of confluent hypergeometric functions U(a,b,z) and M(a,b,z) for large values of b and z)
- The Laplace's and steepest descents methods revisited
- Uniform Asymptotic Expansions for Whittaker’s Confluent Hypergeometric Functions
- Whittaker functions with both parameters large: uniform approximations in terms of parabolic cylinder functions
- Uniform Asymptotic Expansions of Confluent Hypergeometric Functions
- UNIFORM ASYMPTOTIC APPROXIMATIONS FOR THE WHITTAKER FUNCTIONS Mκ,iμ(z) AND Wκ,iμ(z)
- An Asymptotic Expansion of W k,m (z) with Large Variable and Parameters
This page was built for publication: The confluent hypergeometric functions \(M(a,b;z)\) and \(U(a,b;z)\) for large \(b\) and \(z\)