An explicit \(\overline {\partial}\)-integration formula for weighted homogeneous varieties
From MaRDI portal
Publication:1045738
DOI10.1307/mmj/1250169071zbMath1214.32017OpenAlexW2161773953MaRDI QIDQ1045738
Jean Ruppenthal, Eduardo S. Zeron
Publication date: 15 December 2009
Published in: Michigan Mathematical Journal (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1307/mmj/1250169071
Related Items
The \({\overline{\partial}}\)-equation on homogeneous varieties with an isolated singularity ⋮ An explicit \(\bar {\partial }\)-integration formula for weighted homogeneous varieties. II: Forms of higher degree ⋮ Subelliptic estimates for the \(\bar\partial\)-problem on a singular complex space ⋮ Compactness of the \(\bar{\partial}\)-Neumann operator on singular complex spaces ⋮ \(L^2\)-properties of the \(\overline{\partial}\) and the \(\overline{\partial}\)-Neumann operator on spaces with isolated singularities ⋮ Koppelman formulas on the \(A_{1}\)-singularity ⋮ Global Koppelman formulas on (singular) projective varieties
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- The \({\overline{\partial}}\)-equation on homogeneous varieties with an isolated singularity
- Hölder estimates for the \(\overline\partial\)-equation on surfaces with singularities of the type \(E_6\) and \(E_7\)
- Singularities and topology of hypersurfaces
- Hölder estimates for the \(\overline\partial\)-equation in some domains of finite type
- The Cauchy Riemann equation on singular spaces.
- Hölder estimates for the \(\overline \partial\)-equation on surfaces with simple singularities
- Riemannsche Hebbarkeitssätze für Cohomologieklassen
- ABOUT THE $\bar{\partial}$-EQUATION AT ISOLATED SINGULARITIES WITH REGULAR EXCEPTIONAL SET
- Local $L^2$ results for $\overline{\partial}$ on a singular surface
- Semiglobal results for $\overline \partial $ on a complex space with arbitrary singularities
- LOCAL L2 RESULTS FOR $\bar\partial$: THE ISOLATED SINGULARITIES CASE
- Solving on product singularities