A classification of weighted homogeneous Saito free divisors
DOI10.2969/jmsj/06141071zbMath1189.32017OpenAlexW2039724502MaRDI QIDQ1046435
Publication date: 22 December 2009
Published in: Journal of the Mathematical Society of Japan (Search for Journal in Brave)
Full work available at URL: http://www.jstage.jst.go.jp/article/jmath/61/4/61_1071/_article
Coxeter groupsdeformationsLie algebrasdiscriminantslogarithmic vector fieldsSaito free singularities
Singularities in algebraic geometry (14B05) Singularities of surfaces or higher-dimensional varieties (14J17) Complex surface and hypersurface singularities (32S25) Singularities of holomorphic vector fields and foliations (32S65)
Related Items (12)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Free deformations of hypersurface singularities
- Milnor numbers of nonisolated Saito singularities
- Simple singularities and simple algebraic groups
- The microlocal structure of weighted homogeneous polynomials associated with Coxeter systems. I
- The microlocal structure of weighted homogeneous polynomials associated with the Coxeter systems
- On a linear structure of the quotient variety by a finite reflexion group
- Les immeubles des groupes de tresses généralises
- Artin-Gruppen und Coxeter-Gruppen
- NONISOLATED SAITO SINGULARITIES
- On the freeness of equisingular deformations of plane curve singularities
This page was built for publication: A classification of weighted homogeneous Saito free divisors