Green's function for the Hodge Laplacian on some classes of Riemannian and Lorentzian symmetric spaces
DOI10.1007/s00220-009-0826-0zbMath1190.58022arXiv0807.2187OpenAlexW2040137336WikidataQ115388609 ScholiaQ115388609MaRDI QIDQ1048051
Publication date: 11 January 2010
Published in: Communications in Mathematical Physics (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/0807.2187
Fundamental solutions to PDEs (35A08) Global differential geometry of Lorentz manifolds, manifolds with indefinite metrics (53C50) Global Riemannian geometry, including pinching (53C20) Differential geometry of symmetric spaces (53C35) Hyperbolic equations on manifolds (58J45)
Related Items (2)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Wave equations on Lorentzian manifolds and quantization.
- Spinor two-point functions in maximally symmetric spaces
- Vector two-point functions in maximally symmetric spaces
- The spinor heat kernel in maximally symmetric spaces
- Graviton and gauge boson propagators in \(\text{AdS}_{d+1}\)
- L'intégrale de Riemann-Liouville et le problème de Cauchy
- Gravitino propagator in anti-de Sitter space
- L 2 Harmonic Forms on Rotationally Symmetric Riemannian Manifolds
- Green functions of the De Rham Laplacian in maximally symmetric spaces
This page was built for publication: Green's function for the Hodge Laplacian on some classes of Riemannian and Lorentzian symmetric spaces