A note on Hecke's functional equation and the Selberg class
From MaRDI portal
Publication:1048678
DOI10.7169/FACM/1261157810zbMath1269.11089OpenAlexW2036704074MaRDI QIDQ1048678
Giacomo Monti Bragadin, Alberto Perelli, Ettore Carletti
Publication date: 7 January 2010
Published in: Functiones et Approximatio. Commentarii Mathematici (Search for Journal in Brave)
Full work available at URL: https://projecteuclid.org/euclid.facm/1261157810
Other Dirichlet series and zeta functions (11M41) Langlands (L)-functions; one variable Dirichlet series and functional equations (11F66)
Related Items (4)
Non-linear twists of \(L\)-functions: a survey ⋮ Linear twists of \(L\)-functions of degree 2 from the Selberg class ⋮ ON THE STANDARD TWIST OF THE -FUNCTIONS OF HALF-INTEGRAL WEIGHT CUSP FORMS ⋮ On a Hecke-type functional equation with conductor \(q=5\)
Cites Work
- On the structure of the Selberg class. VII: \(1<d<2\)
- A survey of the Selberg class of \(L\)-functions. I
- Hecke's theory and the Selberg class
- On the structure of the Selberg class. I: \(0\leq d\leq 1\).
- Axiomatic Theory of L-Functions: the Selberg Class
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: A note on Hecke's functional equation and the Selberg class