Fields of large transcendence degree generated by values of elliptic functions
DOI10.1007/BF01398396zbMath0516.10027OpenAlexW1988839605WikidataQ93516202 ScholiaQ93516202MaRDI QIDQ1052379
David W. Masser, Gisbert Wüstholz
Publication date: 1983
Published in: Inventiones Mathematicae (Search for Journal in Brave)
Full work available at URL: https://eudml.org/doc/143029
polynomial ringsalgebraic independenceprimary idealWeierstrass elliptic functionzero lemmasalgebraic subgroups of products of elliptic curveseffective version of Hilbert's Nullstellensatzfields of large transcendence degreeKolchin theoremzero estimate for group varieties
Varieties over global fields (11G35) Global ground fields in algebraic geometry (14G25) Transcendence theory of elliptic and abelian functions (11J89)
Related Items (51)
Cites Work
- Multiplicity estimates for analytic functions. II
- Zero estimates on group varieties. I
- An auxiliary result in the theory of transcendental numbers
- An Introduction to the Geometry of Numbers
- Un critère d'indépendance algébrique.
- Indépendance algébrique de valeurs de fonctions exponentielles p-adiques.
- On the orders of zero of certain functions
- Constructions in Algebra
- Algebraic Groups and Algebraic Dependence
- Contributions to the theory of transcendental numbers (I)
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Fields of large transcendence degree generated by values of elliptic functions