Estimating the mean function of a Gaussian process and the Stein effect
DOI10.1016/0047-259X(83)90018-0zbMath0521.62071WikidataQ56941523 ScholiaQ56941523MaRDI QIDQ1055133
Robert L. Wolpert, James O. Berger
Publication date: 1983
Published in: Journal of Multivariate Analysis (Search for Journal in Brave)
minimaxBrownian motionBrownian bridgeKarhunen-Loeve expansionrisk functionStein effectweighted quadratic lossglobal estimation of mean functions of continuous Gaussian processesincorporation of prior information
Non-Markovian processes: estimation (62M09) Bayesian inference (62F15) Markov processes: estimation; hidden Markov models (62M05) Admissibility in statistical decision theory (62C15)
Related Items (6)
Cites Work
- Statistical decision theory. Foundations, concepts, and methods
- A robust generalized Bayes estimator and confidence region for a multivariate normal mean
- Selecting a minimax estimator of a multivariate normal mean
- Minimax estimation of a multivariate normal mean under arbitrary quadratic loss
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Estimating the mean function of a Gaussian process and the Stein effect