An application of the matrix representation of transductions
From MaRDI portal
Publication:1057659
DOI10.1016/0304-3975(85)90019-2zbMath0563.68064OpenAlexW1995176558MaRDI QIDQ1057659
Jean-Eric Pin, Jacques Sakarovitch
Publication date: 1985
Published in: Theoretical Computer Science (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/0304-3975(85)90019-2
Related Items (16)
Unnamed Item ⋮ Operations preserving regular languages ⋮ Newton’s Forward Difference Equation for Functions from Words to Words ⋮ A noncommutative extension of Mahler's theorem on interpolation series ⋮ Products of languages with counter ⋮ Varieties and rational functions ⋮ Theme and Variations on the Concatenation Product ⋮ A topological approach to transductions ⋮ Irreducibility of certain pseudovarieties1 ⋮ Computing by commuting. ⋮ Unnamed Item ⋮ Semi-synchronous transductions ⋮ Unnamed Item ⋮ Finite transducers and rational transductions ⋮ Wreath product and infinite words ⋮ A solution to the problem of (\(A\),\(B\))-invariance for series
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Power monoids and finite J-trivial monoids
- Recognizable sets and power sets of finite semigroups
- Sur le calcul du monoide syntaxique d'un sous monoide finiment engendre
- Variétés de langages et monoide des parties
- A closure property of deterministic context-free languages
- A generalization of the Schützenberger product of finite monoids
- Sur les séries associees à certains systèmes de Lindenmayer
- Regularity-preserving relations
- Sur les rélations rationnelles entre monoides libres
- Variétés de langages et opérations
- Sur la structure des langages algébriques
- Quotients of Context-Free Languages
- On free monoids partially ordered by embedding
- Ordering by Divisibility in Abstract Algebras
- Free differential calculus. IV: The quotient groups of the lower central series
This page was built for publication: An application of the matrix representation of transductions