The geometric nature of plasticity laws
DOI10.1016/0020-7225(85)90072-2zbMath0568.73034OpenAlexW2124862770MaRDI QIDQ1060597
Nguyen Dang Hung, Gery De Saxce
Publication date: 1985
Published in: International Journal of Engineering Science (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/0020-7225(85)90072-2
internal stressescotangent bundleparallel transportsmall strainscovariant derivativeskinematic hardeningstate variablesisotropic hardeningsystem stateelastic domainDrucker's postulateChristoffel connection coefficientscomponents of a covariant vectorconvex part of cotangent vector spaceinternal dissipation elementinternal state manifoldinternal stress covectormetric elementmetric hardeningmetric tensor familynon-differentiable yield criteriapoint of a differentiable manifoldRiemann- Christoffel tensorvon Mises isotropic yield conditionvon Mises, Baltov-Sawczuk and Tresca models
Thermodynamics in solid mechanics (74A15) Plastic materials, materials of stress-rate and internal-variable type (74C99) Applications of global differential geometry to the sciences (53C80) Methods of global Riemannian geometry, including PDE methods; curvature restrictions (53C21) Theory of constitutive functions in solid mechanics (74A20)
Cites Work