Mathematical Research Data Initiative
Main page
Recent changes
Random page
Help about MediaWiki
Create a new Item
Create a new Property
Create a new EntitySchema
Merge two items
In other projects
Discussion
View source
View history
Purge
English
Log in

Embedding of regular semigroups in wreath products

From MaRDI portal
Publication:1062147
Jump to:navigation, search

DOI10.1016/0022-4049(83)90107-XzbMath0572.20045MaRDI QIDQ1062147

R. J. Warne

Publication date: 1983

Published in: Journal of Pure and Applied Algebra (Search for Journal in Brave)


zbMATH Keywords

wreath productsregular semigroupswreath product embeddings


Mathematics Subject Classification ID

General structure theory for semigroups (20M10)


Related Items

Embedding of regular semigroups in wreath products. II, Embedding of regular semigroups in wreath products. III, Simplicity of wreath product of semigroups with fixed passive semigroup, Infinite iteration of matrix semigroups. II: Structure theorem for arbitrary semigroups up to aperiodic morphism



Cites Work

  • On the complexity of finite semigroups
  • Generalized \(\omega-\mathcal L\)-unipotent bisimple semigroups
  • Standard regular semigroups
  • A class of bisimple inverse semigroups
  • Bisimple inverse semigroups mod groups
  • I-Bisimple Semigroups
  • Congruences on ωn-Bisimple Semigroups
  • ω n I-bisimple semigroups
  • A homomorphism theorem for finite semigroups
  • Matrix Representations of d-Simple Semigroups
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
Retrieved from "https://portal.mardi4nfdi.de/w/index.php?title=Publication:1062147&oldid=13081167"
Tools
What links here
Related changes
Special pages
Printable version
Permanent link
Page information
MaRDI portal item
This page was last edited on 31 January 2024, at 00:53.
Privacy policy
About MaRDI portal
Disclaimers
Imprint
Powered by MediaWiki