Exact regularity of Bergman, Szegö and Sobolev space projections in non pseudoconvex domains
From MaRDI portal
Publication:1063205
DOI10.1007/BF01162025zbMath0573.46018MaRDI QIDQ1063205
Publication date: 1986
Published in: Mathematische Zeitschrift (Search for Journal in Brave)
Full work available at URL: https://eudml.org/doc/173720
Reinhardt domaintransverse symmetriesBergman and the Szegö projectionshigher order Sobolev space analogues of the Bergman projectionpseudoconvexity and completenessregularity estimates in Sobolev norms
Related Items
On Hardy spaces on worm domains ⋮ A comparison between the Bergman and Szegö kernels of the non-smooth worm domain \(D'_{\beta }\) ⋮ Comparing the Bergman and the Szegö projections ⋮ Complete Hartogs domains in \({\mathbb{C}}^ 2\) have regular Bergman and Szegö projections ⋮ Weighted Sobolev regularity of the Bergman projection on the Hartogs triangle ⋮ Exact regularity of the Bergman and the Szegö projections on domains with partially transverse symmetries ⋮ Sharp estimates for the Szegő projection on the distinguished boundary of model worm domains ⋮ Bergman projection on the symmetrized bidisk ⋮ Hardy spaces and the Szegő projection of the non-smooth worm domain \(D_\beta^\prime\) ⋮ Sobolev estimates for the \({\bar \partial}\)-Neumann operator on domains in \({\mathbb{C}}^ n\) admitting a defining function that is plurisubharmonic on the boundary ⋮ On the canonical solution of \(\overline{\partial}\) on polydisks ⋮ A counterexample to the differentiability of the Bergman kernel function ⋮ Sobolev regularity of weighted Bergman projections on the unit disc ⋮ Mapping properties of weighted Bergman projection operators on Reinhardt domains ⋮ Small Sets of Infinite Type are Benign for the $\overline\partial$-Neumann Problem
Cites Work
- Variation of the Bergman kernel by cutting a hole
- Regularity of the Bergman projection on domains with transverse symmetries
- Holomorphic reproducing kernels in Reinhardt domains
- Regularity of the Bergman projection and local geometry of domains
- Orthogonal projections onto subspaces of the harmonic Bergman space
- Action of the Automorphisms of a Smooth Domain in C n
- Sobolev Space Projections In Strictly Pseudoconvex Domains
- Unnamed Item
- Unnamed Item
- Unnamed Item