Eine Aussage zur \(L_{\infty}\)-Stabilität und zur genauen Konvergenzordnung der \(H^ 1_ 0\)-Projektionen
From MaRDI portal
Publication:1064006
DOI10.1007/BF01405570zbMath0575.65012MaRDI QIDQ1064006
Publication date: 1984
Published in: Numerische Mathematik (Search for Journal in Brave)
Full work available at URL: https://eudml.org/doc/132944
Numerical computation using splines (65D07) Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs (65N30) Spline approximation (41A15)
Related Items
Maximum-norm stability of the finite element Ritz projection under mixed boundary conditions, Maximum-norm a posteriori error estimates for singularly perturbed elliptic reaction-diffusion problems, An interior maximum norm error estimate for the symmetric interior penalty method on planar polygonal domains, Logarithm cannot be removed in maximum norm error estimates for linear finite elements in 3D, Approximative Green's functions on surfaces and pointwise error estimates for the finite element method, The sharpness of a pointwise error bound in connection with linear finite elements, High-order finite element-integral equation coupling on embedded meshes, From finite differences to finite elements. A short history of numerical analysis of partial differential equations, Maximum-norm stability of the finite element Stokes projection, Maximum-norm estimates for resolvents of elliptic finite element operators, Finite Element Pointwise Results on Convex Polyhedral Domains, Optimal \(L^{\infty}\)-error estimates for piecewise linear finite elements in \({\mathbb{R}}^ n\) for 1\(\leq n\leq 3\)
Cites Work
- Über die punktweise Konvergenz finiter Elemente
- Maximum principle and uniform convergence for the finite element method
- A Weak Discrete Maximum Principle and Stability of the Finite Element Method in L ∞ on Plane Polygonal Domains. I
- On the Quasi-Optimality in $L_\infty$ of the $\overset{\circ}{H}^1$-Projection into Finite Element Spaces*
- Optimal L ∞ Estimates for the Finite Element Method on Irregular Meshes