Extreme eigenvalues of large sparse matrices by Rayleigh quotient and modified conjugate gradients
DOI10.1016/0045-7825(86)90041-1zbMath0579.65028OpenAlexW2032371871MaRDI QIDQ1067355
Giuseppe Gambolati, Anna Maria Perdon
Publication date: 1986
Published in: Computer Methods in Applied Mechanics and Engineering (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/0045-7825(86)90041-1
rate of convergencefinite elementRayleigh quotientCholesky factorizationconjugate gradientsextreme eigenvaluessymmetric positive-definite matrix
Computational methods for sparse matrices (65F50) Numerical computation of eigenvalues and eigenvectors of matrices (65F15) Finite element methods applied to problems in solid mechanics (74S05) Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs (65N30)
Related Items
Cites Work
- The eigenvalue problem \((A-\lambda B)x = 0\) for symmetric matrices of high order
- A class of iterative methods for finite element equations
- The incomplete Cholesky-conjugate gradient method for the iterative solution of systems of linear equations
- Minimal eigenvalue of large sparse matrices by an efficient reverse power-conjugate gradient scheme
- New iterative methods for solution of the eigenproblem
- An iterative procedure for the calculation of the lowest real eigenvalue and eigenvector of a nonsymmetric matrix
- The iterative calculation of several of the lowest or highest eigenvalues and corresponding eigenvectors of very large symmetric matrices
- Fast solution to finite element flow equations by newton iteration and modified conjugate gradient method
- An Iterative Solution Method for Linear Systems of Which the Coefficient Matrix is a Symmetric M-Matrix
- Gradient methods for finite-element eigenproblems.
- The computational efficiency of a new minimization algorithm for eigenvalue analysis
- Optimal gradient minimization scheme for finite element eigenproblems
- Berechnung von Eigenwerten und Eigenvektoren normaler Matrizenpaare durch Ritz‐Iteration
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item