The invariants of the Tate-Shafarevich group in a \({\mathbb{Z}}_ p\)- extension can be infinite
From MaRDI portal
Publication:1068156
DOI10.1215/S0012-7094-85-05209-3zbMath0581.14030OpenAlexW1555767650MaRDI QIDQ1068156
Publication date: 1985
Published in: Duke Mathematical Journal (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1215/s0012-7094-85-05209-3
Iwasawa power seriesp-adic height pairingfiniteness of the Tate-Shafarevich groupGalois invariantstwo-variable p-adic L- function
Galois theory (11R32) Analytic theory of abelian varieties; abelian integrals and differentials (14K20) Arithmetic ground fields for abelian varieties (14K15)
Related Items
Cites Work
- Infinite descent and \(p\)-adic heights over elliptic curves with complex multiplication
- \(p\)-adic height pairings. II
- On two variable p-adic L-functions
- \(p\)-adic interpolation of real analytic Eisenstein series
- p-adic height pairings. I
- Iwasawa L-functions of varieties over algebraic number fields. A first approach
- Rational points of Abelian varieties with values in towers of number fields
- On the Birch and Swinnerton-Dyer conjecture
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item