Mathematical Research Data Initiative
Main page
Recent changes
Random page
Help about MediaWiki
Create a new Item
Create a new Property
Create a new EntitySchema
Merge two items
In other projects
Discussion
View source
View history
Purge
English
Log in

The invariants of the Tate-Shafarevich group in a \({\mathbb{Z}}_ p\)- extension can be infinite

From MaRDI portal
Publication:1068156
Jump to:navigation, search

DOI10.1215/S0012-7094-85-05209-3zbMath0581.14030OpenAlexW1555767650MaRDI QIDQ1068156

Gudrun Brattström

Publication date: 1985

Published in: Duke Mathematical Journal (Search for Journal in Brave)

Full work available at URL: https://doi.org/10.1215/s0012-7094-85-05209-3

zbMATH Keywords

Iwasawa power seriesp-adic height pairingfiniteness of the Tate-Shafarevich groupGalois invariantstwo-variable p-adic L- function


Mathematics Subject Classification ID

Galois theory (11R32) Analytic theory of abelian varieties; abelian integrals and differentials (14K20) Arithmetic ground fields for abelian varieties (14K15)


Related Items

Iwasawa theory and \(p\)-adic heights



Cites Work

  • Infinite descent and \(p\)-adic heights over elliptic curves with complex multiplication
  • \(p\)-adic height pairings. II
  • On two variable p-adic L-functions
  • \(p\)-adic interpolation of real analytic Eisenstein series
  • p-adic height pairings. I
  • Iwasawa L-functions of varieties over algebraic number fields. A first approach
  • Rational points of Abelian varieties with values in towers of number fields
  • On the Birch and Swinnerton-Dyer conjecture
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
Retrieved from "https://portal.mardi4nfdi.de/w/index.php?title=Publication:1068156&oldid=13085201"
Tools
What links here
Related changes
Special pages
Printable version
Permanent link
Page information
MaRDI portal item
This page was last edited on 31 January 2024, at 01:02.
Privacy policy
About MaRDI portal
Disclaimers
Imprint
Powered by MediaWiki