The nonparametric integral of the calculus of variations as a Weierstrass integral: existence and representation
From MaRDI portal
Publication:1068357
DOI10.1016/0022-247X(85)90354-3zbMath0582.49031MaRDI QIDQ1068357
Publication date: 1985
Published in: Journal of Mathematical Analysis and Applications (Search for Journal in Brave)
Set-valued set functions and measures; integration of set-valued functions; measurable selections (28B20) Variational problems in a geometric measure-theoretic setting (49Q20) Length, area, volume, other geometric measure theory (28A75)
Related Items (5)
On the nonparametric integral over a bv surface ⋮ On the lower semicontinuity of certain integrals of the calculus of variations ⋮ Nonlinear integration and Weierstrass integral over a manifold, connections with theorems on martingales ⋮ The nonparametric Weierstrass integral over a BV curve as a length functional ⋮ The nonparametric integral of the calculus of variations as a Weierstrass integral. II: Some applications
Cites Work
- The nonparametric integral of the calculus of variations as a Weierstrass integral. II: Some applications
- Sull'estensione dell'integrale debole alla Burkill-Cesari ad una misura
- L'integrale di Weierstrass non parametrico e quasi additivita
- Quasi additivita e integrali non parametrici 2-dimensionali del calcolo delle variazioni
- Approssimata subadditivita e integrali non parametrici 2-dimensionali del calcolo delle variazioni
- The Burkill-Cesari integral
- Burkill-Cesari integrals of quasi additive interval functions
- The theory of the Burkill integral
- Martingale Convergence and the Radon-Nikodym Theorem in Banach Spaces.
- Quasi Additive Set Functions and the Concept of Integral Over a Variety
- Extension Problem for Quasi Additive Set Functions and Radon-Nikodym Derivatives
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: The nonparametric integral of the calculus of variations as a Weierstrass integral: existence and representation