Nonlinear nonuniformly elliptic second-order equations
From MaRDI portal
Publication:1069032
DOI10.1007/BF01372196zbMath0582.35045OpenAlexW2038288580MaRDI QIDQ1069032
Publication date: 1986
Published in: Journal of Soviet Mathematics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/bf01372196
Dirichlet problemexistence theoremsa priori estimatesfully nonlinearfirst derivativesfirst boundary-value problemsecond derivativesclassical solvabilitymultidimensional nonlinear elliptic equations
Lua error in Module:PublicationMSCList at line 37: attempt to index local 'msc_result' (a nil value).
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Solvability of boundary-value problems for nonlinear elliptic equations that are not in the divergence form
- Fully nonlinear second order elliptic equations with large zeroth order coefficient
- A variational inequality approach to the Bellman-Dirichlet equation for two elliptic operators
- Local estimates for subsolutions and supersolutions of general second order elliptic quasilinear equations
- Résolution analytique des problèmes de Bellman-Dirichlet
- Méthodes de contrôle optimal en analyse complexe. I: Résolution d'équation de Monge Ampère
- A priori estimates of the second derivatives of solutions to nonlinear second-order equations on the boundary of the domain
- Innere Abschätzungen für Lösungen nichtlinearer elliptischer Differentialgleichungen zweiter Ordnung in n Variablen
- Estimate of the Hölder norm of the solutions of second-order quasilinear elliptic equations of the general form
- Über die Hölderstetigkeit der zweiten Ableitungen der Lösungen nichtlinearer elliptischer Gleichungen
- BOUNDEDLY NONHOMOGENEOUS ELLIPTIC AND PARABOLIC EQUATIONS
- Fully Nonlinear, Uniformly Elliptic Equations Under Natural Structure Conditions
- Optimal Stochastic Switching and the Dirichlet Problem for the Bellman Equation
- Classical solutions of fully nonlinear, convex, second-order elliptic equations
- On the regularity of the monge-ampère equation det (∂2 u/∂xi ∂xj) = f(x, u)
This page was built for publication: Nonlinear nonuniformly elliptic second-order equations