Cramér-von Mises statistics based on the sample quantile function and estimated parameters
DOI10.1016/0047-259X(86)90061-8zbMath0583.62015MaRDI QIDQ1069225
David M. Mason, Vincent N. La Riccia
Publication date: 1986
Published in: Journal of Multivariate Analysis (Search for Journal in Brave)
order statisticsGaussian processcomposite null hypothesisasymptotic null distribution of Cramér-von Mises type statisticsestimated weighted empirical quantile process
Asymptotic distribution theory in statistics (62E20) Central limit and other weak theorems (60F05) Order statistics; empirical distribution functions (62G30) Functional limit theorems; invariance principles (60F17) Asymptotic properties of parametric tests (62F05)
Related Items (5)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Weak convergence of the weighted empirical quantile process in \(L^ 2(0,1)\)
- A differential for L-statistics
- Approximations of the empirical process when parameters are estimated
- Asymptotic properties of weighted \(L^ 2\) quantile distance estimators
- Asymptotic results for goodness-of-fit statistics with unknown parameters
- Asymptotic distributions for quadratic forms with applications to tests of fit
- Weak convergence of the sample distribution function when parameters are estimated
- Approximation Theorems of Mathematical Statistics
- Nonparametric Statistical Data Modeling
- An analysis of variance test for normality (complete samples)
This page was built for publication: Cramér-von Mises statistics based on the sample quantile function and estimated parameters