Learn-merge invariance of priors: A characterization of the Dirichlet distributions and processes
From MaRDI portal
Publication:1070681
DOI10.1016/0047-259X(86)90060-6zbMath0585.62003MaRDI QIDQ1070681
Publication date: 1986
Published in: Journal of Multivariate Analysis (Search for Journal in Brave)
inductive learningprior distributionsR. CarnapBayesian learning modelDirichlet distributions and processesLearn-merge invarianceprinciple of natural conjugate priorssymmetric measuresW. E. Johnson
Foundations and philosophical topics in statistics (62A01) Philosophical and critical aspects of logic and foundations (03A05) General logic (03B99) Nonparametric inference (62G99)
Related Items (3)
Characterizing Dirichlet Priors ⋮ The History of the Dirichlet and Liouville Distributions ⋮ The logical postulates of Böge, Carnap and Johnson in the context of Papangelou processes
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- W. E. Johnson's sufficientness postulate
- A Bayesian analysis of some nonparametric problems
- Symmetric Measures on Cartesian Products
- I.—PROBABILITY: THE DEDUCTIVE AND INDUCTIVE PROBLEMS
- Die Problematik apriorischer Wahrscheinlichkeiten im System der induktiven Logik von Rudolf Carnap
This page was built for publication: Learn-merge invariance of priors: A characterization of the Dirichlet distributions and processes