Estimations des erreurs de meilleure approximation polynomiale et d'interpolation de Lagrange dans les espaces de Sobolev d'ordre non entier. (Estimation of the best polynomial approximation error and the Lagrange interpolation error in fractional-order S
DOI10.1007/BF01389473zbMath0587.41018MaRDI QIDQ1072035
Publication date: 1984
Published in: Numerische Mathematik (Search for Journal in Brave)
Full work available at URL: https://eudml.org/doc/132970
Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs (65N30) Best approximation, Chebyshev systems (41A50) Approximation by polynomials (41A10) Rate of convergence, degree of approximation (41A25)
Related Items (17)
Cites Work
- On a class of interpolation spaces
- Espaces d'interpolation et théorème de Soboleff
- Theory of Bessel potentials. II
- Multipoint Taylor formulas and applications to the finite element method
- Bounds for a class of linear functionals with applications to Hermite interpolation
- Approximation in the finite element method
- General Lagrange and Hermite interpolation in \(R^n\) with applications to finite element methods
- Polynomial Approximation of Functions in Sobolev Spaces
- Structure et estimations de coefficients d'erreurs
- Estimation of Linear Functionals on Sobolev Spaces with Application to Fourier Transforms and Spline Interpolation
- Commutativite de deux foncteurs d'interpolation et applications
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Estimations des erreurs de meilleure approximation polynomiale et d'interpolation de Lagrange dans les espaces de Sobolev d'ordre non entier. (Estimation of the best polynomial approximation error and the Lagrange interpolation error in fractional-order S