Units in group rings: Splittings and the isomorphism problem
DOI10.1016/0021-8693(85)90018-3zbMath0588.16004OpenAlexW1979229498MaRDI QIDQ1073142
Klaus W. Roggenkamp, Leonard L. Scott
Publication date: 1985
Published in: Journal of Algebra (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/0021-8693(85)90018-3
group ringsisomorphism problemmetabelian groupsmaximal ordercongruence subgroup theoremsection map of a splitting
Group rings (16S34) Group rings of finite groups and their modules (group-theoretic aspects) (20C05) Separable algebras (e.g., quaternion algebras, Azumaya algebras, etc.) (16H05) Units, groups of units (associative rings and algebras) (16U60)
Related Items (4)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Finite Abelian groups with isomorphic group algebras
- On the units of the integral group ring of a dihedral group
- Units in integral group rings
- Units of integral group rings of metabelian groups
- On the isomorphism problem for integral group-rings of circle-groups
- Group rings of circle and unit groups
- Isomorphic groups and group rings
- Solution of the congruence subgroup problem for \(\text{SL}_ n\) \((n\geq 3)\) and \(\text{Sp}_{2n}\) \((n\geq 2)\)
- Deux groupes finis distincts ayant la même algèbre de groupe sur tout corps
- Isomorphism of modular group algebras
- UNITS IN INTEGRAL METABELIAN GROUPRINGS I, JACKSON'S UNIT THEOREM REVISITED
- THE GROUPS OF UNITS OF THE INTEGRAL GROUP RINGS OF FINITE METABELIAN AND FINITE NILPOTENT GROUPS
- On the Circle Group of a Nilpotent Ring
- Endliche Gruppen I
- Circle Groups of Nilpotent Rings
This page was built for publication: Units in group rings: Splittings and the isomorphism problem