Cubic metaplectic forms on GL(3)
From MaRDI portal
Publication:1074626
DOI10.1007/BF01388743zbMath0591.10018MaRDI QIDQ1074626
Daniel Bump, Jeffrey Hoffstein
Publication date: 1986
Published in: Inventiones Mathematicae (Search for Journal in Brave)
Full work available at URL: https://eudml.org/doc/143348
Eisenstein seriesFourier coefficientsformsL-functionsmetaplectic groupWhittaker functionresiduemetaplecticcubic L-functionsGL(3)
Related Items
Mean square values of Hecke \(L\)-series formed with \(r\)-th order characters ⋮ Some Euler products associated with cubic metaplectic forms on GL(3) ⋮ Mellin transforms of Whittaker functions on \(\text{GL} (4,\mathbb{R})\) and \(\text{GL} (4,\mathbb{C})\) ⋮ On Mellin transforms of unramified Whittaker functions on GL(3,C) ⋮ Metaplectic theta functions and global integrals ⋮ On some applications of automorphic forms to number theory ⋮ The \(GL(3)\) Rankin-Selberg convolution for functions not of rapid decay ⋮ Uniqueness of Whittaker functionals on the metaplectic group ⋮ The \(GL(3)\) Mellin transform for twisted non-cuspidal forms of higher level ⋮ On the non-vanishing of cubic twists of automorphic $L$-series
Cites Work
- Automorphic forms on GL(3,\({\mathbb{R}})\)
- Metaplectic forms
- Eisenstein series of \(1\over 2\)-integral weight and the mean value of real Dirichlet L-series
- Sur les coefficients de Fourier des formes modulaires de poids demi-entier
- The multiplicity one theorem for \(\mathrm{GL}_n\)
- Solution of the congruence subgroup problem for \(\text{SL}_ n\) \((n\geq 3)\) and \(\text{Sp}_{2n}\) \((n\geq 2)\)
- On modular forms of half integral weight
- Construction of integral modular forms of half-integral dimension with \(\vartheta\)-multipliers in one and two variables
- On the Holomorphy of Certain Dirichlet Series
- A cubic analogue of the theta series.
- A relation between automorphic representations of ${\rm GL}(2)$ and ${\rm GL}(3)$
- The Fourier Expansion of Eisenstein Series for GL(3,Z)
- Fonctions de Whittaker associées aux groupes de Chevalley
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item